THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS
"ASOCIACION TECNICO-PROFESIONAL MUNDIAL DEDICADA A LA ESTANDARIZACION"
martes, 10 de noviembre de 2009
INTRODUCCION
IEEE corresponde a las siglas de The Institute of Electrical and Electronics Engineers, el Instituto de Ingenieros Eléctricos y Electrónicos.
en este estandar nos mencionara la importancia que tiene y los diferentes estandares que existen.
IEE Persigue fines exclusivamente científicos, técnicos y educacionales. No es una asociación gremialista profesional, política gubernamental. Ni persigue fines lucrativos.
los siguientes puntos muy importantes sobre el estandar IEEE:
CONCEPTO DE IEEE
BREVE HISTORIA SOBRE IEE.
DIFERENTES ESTANDARES DE IEEE.
en este estandar nos mencionara la importancia que tiene y los diferentes estandares que existen.
IEE Persigue fines exclusivamente científicos, técnicos y educacionales. No es una asociación gremialista profesional, política gubernamental. Ni persigue fines lucrativos.
los siguientes puntos muy importantes sobre el estandar IEEE:
CONCEPTO DE IEEE
BREVE HISTORIA SOBRE IEE.
DIFERENTES ESTANDARES DE IEEE.
DESARROLLO
CONCEPTO DE IEEE: corresponde a las siglas de The Institute of Electrical and Electronics Engineers, el Instituto de Ingenieros Eléctricos y Electrónicos, una asociación técnico-profesional mundial dedicada a la estandarización, entre otras cosas. Es la mayor asociación internacional sin fines de lucro formada por profesionales de las nuevas tecnologías, como ingenieros eléctricos, ingenieros en electrónica, científicos de la computación, ingenieros en informática,ingenieros en biomédica e ingenieros en telecomunicación.
HISTORIA DE IEEE: Fundada en 1.884 con Alexander Graham Bell y Thomas Alva Edison entre sus principales miembros, hoy es la asociación más grande alrededor del mundo, que agrupa a estudiantes y profesionales de la ingeniería eléctrica, electrónica y computación. Tiene sus sedes en la ciudad de New York, USA, y en Piscataway, New Jersey, USA.
A través de sus miembros, más de 360.000 voluntarios en 175 países, el IEEE es una autoridad líder y de máximo prestigio en las áreas técnicas derivadas de la eléctrica original: desde ingeniería computacional, tecnologías biomédica y aeroespacial, hasta las áreas de energía eléctrica, control, telecomunicaciones y electrónica de consumo, entre otras.
Según el mismo IEEE, su trabajo es promover la creatividad, el desarrollo y la integración, compartir y aplicar los avances en las tecnologías de la información, electrónica y ciencias en general para beneficio de la humanidad y de los mismos profesionales. Algunos de sus estándares son:
•VHDL es el acrónimo que representa la combinación de VHSIC y HDL, donde VHSIC es el acrónimo de Very High Speed Integrated Circuit y HDL es a su vez el acrónimo de Hardware Description Language.
Es un lenguaje usado por ingenieros definido por el IEEE (Institute of Electrical and Electronics Engineers) (ANSI/IEEE 1076-1993) que se usa para diseñar circuitos digitales. Otros métodos para diseñar circuitos son la captura de esquemas (con herramientas CAD) y los diagramas de bloques, pero éstos no son prácticos en diseños complejos.
•POSIX es el acrónimo de Portable Operating System Interface; la X viene de UNIX como seña de identidad de la API.
El término fue sugerido por Richard Stallman en respuesta a la demanda de la IEEE, que buscaba un nombre fácil de recordar. Una traducción aproximada del acrónimo podría ser "Interfaz para Sistemas Operativos migrables basados en UNIX".
•El IEEE 1394 (conocido como FireWire por Apple Inc. y como i.Link por Sony) es un estándar multiplataforma para entrada/salida de datos en serie a gran velocidad. Suele utilizarse para la interconexión de dispositivos digitales como cámaras digitales y videocámaras a computadoras.
•El IEEE-488 permite que hasta 15 dispositivos inteligentes compartan un simple bus paralelo de 8 bits, mediante conexión en cadena, con el dispositivo más lento determinando la velocidad de transferencia. La máxima velocidad de transmisión está sobre 1 Mbps en el estándar original y en 8 Mbps con IEEE-488.1-2003 (HS-488).
•IEEE 802 es un estudio de estándares perteneciente al Instituto de Ingenieros Eléctricos y Electrónicos (IEEE), que actúa sobre Redes de Ordenadores, concretamente y según su propia definición sobre redes de área local (RAL, en inglés LAN) y redes de área metropolitana (MAN en inglés). También se usa el nombre IEEE 802 para referirse a los estándares que proponen, y algunos de los cuales son muy conocidos: Ethernet (IEEE 802.3), o Wi-Fi (IEEE 802.11), incluso está intentando estandarizar Bluetooth en el 802.15.
Se centra en definir los niveles más bajos (según el modelo de referencia OSI o sobre cualquier otro modelo), concretamente subdivide el segundo nivel, el de enlace, en dos subniveles, el de enlace lógico, recogido en 802.2, y el de acceso al medio. El resto de los estándares recogen tanto el nivel físico, como el subnivel de acceso al medio.
•El estándar IEEE 802.11 o Wi-Fi de IEEE que define el uso de los dos niveles inferiores de la arquitectura OSI (capas física y de enlace de datos), especificando sus normas de funcionamiento en una WLAN. Los protocolos de la rama 802.x definen la tecnología de redes de área local y redes de área metropolitana.
Wifi N ó 802.11n: En la actualidad la mayoría de productos son de la especificación b y de la g , sin embargo ya se ha ratificado el estándar 802.11n que sube el límite teórico hasta los 600 Mbps. Actualmente ya existen varios productos que cumplen el estándar N con un máximo de 300 Mbps (80-100 estables).
•El estándar de la IEEE para aritmética en coma flotante (IEEE 754) es el estándar más extendido para las computaciones en punto flotante, y es seguido por muchas de las mejoras de CPU y FPU. El estándar define formatos para la representación de números en punto flotante (incluyendo el cero) y valores desnormalizados, así como valores especiales como infinito y NaN, con un conjunto de operaciones en punto flotante que trabaja sobre estos valores.
• IEEE 830
•Puedes buscar páginas sobre «IEEE 830», ver todas las páginas desde este título o solicitar su creación.
•Para comenzar a crear un artículo, introduce la información en la caja situada debajo.
•Si has seguido un enlace rojo, no estás obligado a introducir un texto aquí. Puedes volver atrás y seguir en el artículo anterior.
•Puedes pedir información en Consultas, porque si lo haces aquí tu petición será borrada sin previo aviso.
•Si quieres hacer pruebas, por favor, utiliza la Zona de pruebas.
•Si ya habías creado una página con este nombre, limpia el caché de tu navegador. También puede haber sido borrada.
ejemplo de la norma IEEE 802.11n :
MIMO usa múltiples antenas transmisoras y receptoras para mejorar el desempeño del sistema. MIMO es una tecnología que usa múltiples antenas para manejar más información (cuidando la coherencia) que utilizando una sóla antena. Dos beneficios importantes que provee a 802.11n son la diversidad de antenas y el multiplexado espacial.
La tecnología MIMO depende de señales multiruta. Las señales multiruta son señales reflejadas que llegan al receptor un tiempo después de que la señal de línea de visión (line of sight, LOS) ha sido recibida. En una red no basada en MIMO, como son las redes 802.11a/b/g, las señales multiruta son percibidas como interferencia que degradan la habilidad del receptor de recobrar el mensaje en la señal. MIMO utiliza la diversidad de las señales multirutas para incrementar la habilidad de un receptor de recobrar los mensajes de la señal.
Otra habilidad que provee MIMO es el Multiplexado de División Espacial (SDM). SDM multiplexa espacialmente múltiples flujos de datos independientes, transferidos simultáneamente con un canal espectral de ancho de banda. SDM puede incrementar significativamente el desempeño de la transmisión conforme el número de flujos espaciales es incrementado. Cada flujo espacial requiere una antena discreta tanto en el transmisor como el receptor. Además, la tecnología MIMO requiere una cadena de radio frecuencia separada y un convertir de análogo a digital para cada antena MIMO lo cual incrementa el costo de implantación comparado con sistemas sin MIMO.
Channel Bonding, también conocido como 40 MHz o unión de interfaces de red, es la segunda tecnología incorporada al estándar 802.11n la cual puede utilizar dos canales separados, que no se solapen, para transmitir datos simultáneamente. La unión de interfaces de red incrementa la cantidad de datos que pueden ser transmitidos.
Se utilizan dos bandas adyacentes de 20 MHz cada una, por eso el nombre de 40 MHz. Esto permite doblar la velocidad de la capa física disponible en un solo canal de 20 MHz. (Aunque el desempeño del lado del usuario no será doblado.)
Utilizar conjuntamente una arquitectura MIMO con canales de mayor ancho de banda ofrece la oportunidad de crear sistemas muy poderosos y rentables para incrementar la velocidad de transmisión de la capa física.
HISTORIA DE IEEE: Fundada en 1.884 con Alexander Graham Bell y Thomas Alva Edison entre sus principales miembros, hoy es la asociación más grande alrededor del mundo, que agrupa a estudiantes y profesionales de la ingeniería eléctrica, electrónica y computación. Tiene sus sedes en la ciudad de New York, USA, y en Piscataway, New Jersey, USA.
A través de sus miembros, más de 360.000 voluntarios en 175 países, el IEEE es una autoridad líder y de máximo prestigio en las áreas técnicas derivadas de la eléctrica original: desde ingeniería computacional, tecnologías biomédica y aeroespacial, hasta las áreas de energía eléctrica, control, telecomunicaciones y electrónica de consumo, entre otras.
Según el mismo IEEE, su trabajo es promover la creatividad, el desarrollo y la integración, compartir y aplicar los avances en las tecnologías de la información, electrónica y ciencias en general para beneficio de la humanidad y de los mismos profesionales. Algunos de sus estándares son:
•VHDL es el acrónimo que representa la combinación de VHSIC y HDL, donde VHSIC es el acrónimo de Very High Speed Integrated Circuit y HDL es a su vez el acrónimo de Hardware Description Language.
Es un lenguaje usado por ingenieros definido por el IEEE (Institute of Electrical and Electronics Engineers) (ANSI/IEEE 1076-1993) que se usa para diseñar circuitos digitales. Otros métodos para diseñar circuitos son la captura de esquemas (con herramientas CAD) y los diagramas de bloques, pero éstos no son prácticos en diseños complejos.
•POSIX es el acrónimo de Portable Operating System Interface; la X viene de UNIX como seña de identidad de la API.
El término fue sugerido por Richard Stallman en respuesta a la demanda de la IEEE, que buscaba un nombre fácil de recordar. Una traducción aproximada del acrónimo podría ser "Interfaz para Sistemas Operativos migrables basados en UNIX".
•El IEEE 1394 (conocido como FireWire por Apple Inc. y como i.Link por Sony) es un estándar multiplataforma para entrada/salida de datos en serie a gran velocidad. Suele utilizarse para la interconexión de dispositivos digitales como cámaras digitales y videocámaras a computadoras.
•El IEEE-488 permite que hasta 15 dispositivos inteligentes compartan un simple bus paralelo de 8 bits, mediante conexión en cadena, con el dispositivo más lento determinando la velocidad de transferencia. La máxima velocidad de transmisión está sobre 1 Mbps en el estándar original y en 8 Mbps con IEEE-488.1-2003 (HS-488).
•IEEE 802 es un estudio de estándares perteneciente al Instituto de Ingenieros Eléctricos y Electrónicos (IEEE), que actúa sobre Redes de Ordenadores, concretamente y según su propia definición sobre redes de área local (RAL, en inglés LAN) y redes de área metropolitana (MAN en inglés). También se usa el nombre IEEE 802 para referirse a los estándares que proponen, y algunos de los cuales son muy conocidos: Ethernet (IEEE 802.3), o Wi-Fi (IEEE 802.11), incluso está intentando estandarizar Bluetooth en el 802.15.
Se centra en definir los niveles más bajos (según el modelo de referencia OSI o sobre cualquier otro modelo), concretamente subdivide el segundo nivel, el de enlace, en dos subniveles, el de enlace lógico, recogido en 802.2, y el de acceso al medio. El resto de los estándares recogen tanto el nivel físico, como el subnivel de acceso al medio.
•El estándar IEEE 802.11 o Wi-Fi de IEEE que define el uso de los dos niveles inferiores de la arquitectura OSI (capas física y de enlace de datos), especificando sus normas de funcionamiento en una WLAN. Los protocolos de la rama 802.x definen la tecnología de redes de área local y redes de área metropolitana.
Wifi N ó 802.11n: En la actualidad la mayoría de productos son de la especificación b y de la g , sin embargo ya se ha ratificado el estándar 802.11n que sube el límite teórico hasta los 600 Mbps. Actualmente ya existen varios productos que cumplen el estándar N con un máximo de 300 Mbps (80-100 estables).
•El estándar de la IEEE para aritmética en coma flotante (IEEE 754) es el estándar más extendido para las computaciones en punto flotante, y es seguido por muchas de las mejoras de CPU y FPU. El estándar define formatos para la representación de números en punto flotante (incluyendo el cero) y valores desnormalizados, así como valores especiales como infinito y NaN, con un conjunto de operaciones en punto flotante que trabaja sobre estos valores.
• IEEE 830
•Puedes buscar páginas sobre «IEEE 830», ver todas las páginas desde este título o solicitar su creación.
•Para comenzar a crear un artículo, introduce la información en la caja situada debajo.
•Si has seguido un enlace rojo, no estás obligado a introducir un texto aquí. Puedes volver atrás y seguir en el artículo anterior.
•Puedes pedir información en Consultas, porque si lo haces aquí tu petición será borrada sin previo aviso.
•Si quieres hacer pruebas, por favor, utiliza la Zona de pruebas.
•Si ya habías creado una página con este nombre, limpia el caché de tu navegador. También puede haber sido borrada.
ejemplo de la norma IEEE 802.11n :
MIMO usa múltiples antenas transmisoras y receptoras para mejorar el desempeño del sistema. MIMO es una tecnología que usa múltiples antenas para manejar más información (cuidando la coherencia) que utilizando una sóla antena. Dos beneficios importantes que provee a 802.11n son la diversidad de antenas y el multiplexado espacial.
La tecnología MIMO depende de señales multiruta. Las señales multiruta son señales reflejadas que llegan al receptor un tiempo después de que la señal de línea de visión (line of sight, LOS) ha sido recibida. En una red no basada en MIMO, como son las redes 802.11a/b/g, las señales multiruta son percibidas como interferencia que degradan la habilidad del receptor de recobrar el mensaje en la señal. MIMO utiliza la diversidad de las señales multirutas para incrementar la habilidad de un receptor de recobrar los mensajes de la señal.
Otra habilidad que provee MIMO es el Multiplexado de División Espacial (SDM). SDM multiplexa espacialmente múltiples flujos de datos independientes, transferidos simultáneamente con un canal espectral de ancho de banda. SDM puede incrementar significativamente el desempeño de la transmisión conforme el número de flujos espaciales es incrementado. Cada flujo espacial requiere una antena discreta tanto en el transmisor como el receptor. Además, la tecnología MIMO requiere una cadena de radio frecuencia separada y un convertir de análogo a digital para cada antena MIMO lo cual incrementa el costo de implantación comparado con sistemas sin MIMO.
Channel Bonding, también conocido como 40 MHz o unión de interfaces de red, es la segunda tecnología incorporada al estándar 802.11n la cual puede utilizar dos canales separados, que no se solapen, para transmitir datos simultáneamente. La unión de interfaces de red incrementa la cantidad de datos que pueden ser transmitidos.
Se utilizan dos bandas adyacentes de 20 MHz cada una, por eso el nombre de 40 MHz. Esto permite doblar la velocidad de la capa física disponible en un solo canal de 20 MHz. (Aunque el desempeño del lado del usuario no será doblado.)
Utilizar conjuntamente una arquitectura MIMO con canales de mayor ancho de banda ofrece la oportunidad de crear sistemas muy poderosos y rentables para incrementar la velocidad de transmisión de la capa física.
CONCLUSION
Mediante sus actividades de publicación técnica, conferencias y estándares basados en consenso, el IEEE produce más del 30% de la literatura publicada en el mundo sobre ingeniería eléctrica, en computación, telecomunicaciones y tecnología de control, organiza más de 350 grandes conferencias al año en todo el mundo, y posee cerca de 900 estándares activos, con otros 700 más bajo desarrollo.
EL IEEE es una organizacion profesional con membresia en todo el mundo,se precisa en actividades tecnicas, educacionales y profesionales que promueven la teoria y la practica y la electrotecnologia para el desarrollo personal y profesional para su membresia.
fomenta los conocimientos y los avances cientificos y tecnologicos, los cuales las membresia de IEEE transforma en productos practicos y seguros en procedimientos que engrandecen la calidad de su vida.
CIENTÍFICOS / EDUCATIVOS
Promover el avance de las teorías y las practicas de la electrotecnología.
PROFESIONALES
Fomentar el progreso y el desarrollo profesional de su membresía.
CON LA SOCIEDAD
Mejorar la calidad de vida a través de la aplicación de la electrotecnologia.
Promover el entendimiento de la electrotecnologia ante el publico
EL IEEE es una organizacion profesional con membresia en todo el mundo,se precisa en actividades tecnicas, educacionales y profesionales que promueven la teoria y la practica y la electrotecnologia para el desarrollo personal y profesional para su membresia.
fomenta los conocimientos y los avances cientificos y tecnologicos, los cuales las membresia de IEEE transforma en productos practicos y seguros en procedimientos que engrandecen la calidad de su vida.
CIENTÍFICOS / EDUCATIVOS
Promover el avance de las teorías y las practicas de la electrotecnología.
PROFESIONALES
Fomentar el progreso y el desarrollo profesional de su membresía.
CON LA SOCIEDAD
Mejorar la calidad de vida a través de la aplicación de la electrotecnologia.
Promover el entendimiento de la electrotecnologia ante el publico
Suscribirse a:
Comentarios (Atom)